Posts Tagged University of Newcastle Australia

A12 – Complex Numbers 4

Graphing wedges and circles (8.20) Advertisements

, ,

Leave a comment

A11 – Complex Numbers 3

De Moivre’s theorem 1 (2.18) De Moivre’s theorem 2 (11.48) Euler’s identity (12.26) Exponential form 1 – starts at 7:30 Exponential form 2 (10.12) Finding the roots of complex numbers –exponential form (11.53) nth roots – trigonometric form (8.15) More roots – trigonometric form (9.42) Trigonometric application of complex numbers (11.11) Why complex numbers are used in electronics (16.12)

, ,

Leave a comment

A10 – Complex Numbers 2

Cartesian form to polar form 1 – from Cartesian form (a+ib) to Polar form (3.31) Cartesian form to polar form 2 (2.04) Polar form 3 (4.38) Polar to Cartesian (2.18) Multiplying and dividing in polar form 1 (3.27) Multiplying and dividing in polar form 2 (3.17)

, ,

Leave a comment

A9 – Complex Numbers 1

Introduction to i (5.20) Powers of i (6.21) The principal (positive) square root of -1 (6.45) Roots of negative numbers (4.04) Real and imaginary parts (4.44) Adding complex numbers (4.39) Subtracting complex numbers (3.51) Multiplying complex numbers (5.32) Complex conjugate (4.01) Dividing complex numbers (4.58) Complex roots of a quadratic – using the quadratic formula (10.15) Quadratic with complex coefficients (9.01) Plotting (5.54) Graphing and the modulus 1 – the modulus […]

, ,

Leave a comment

A8 – Vectors 5

Geometry Parallelogram proof using vectors (8.05) Medians of a triangle (4.53) Science and Engineering Torque 1 – here they use foot pounds instead of the standard Newton meters but the calculations aren’t affected (4.12) Torque 2 (7.50) Force up an inclined plane (2.10) Work (8.47) Tension 1 (10.20) Tension 2 (10.19)

, ,

Leave a comment

A7 – Vectors 4

Lines and planes – here you need to realise <x,y,z>, xi+yj+zk, [x,y,z] and (x,y,z)  are all ways of writing a vector (you can also write them vertically as seen before). Most of the following videos use the square bracket notation, unfortunately this notation can be used to mean the scalar triple product – as is done in MATH1110 – but […]

, ,

Leave a comment

A6 – Vectors 3

A matrix is simply an array of numbers (or you can view it as rows/columns of vectors), if a matrix has the same number of rows and columns then it has a number associated with it called the determinant. Introduction to determinants and the different methods of calculating them (7.35) The cofactor approach to 3×3 matrices (6.56) The rule of […]

, ,

Leave a comment